Wastewater Reuse for Biofuel Production

Issa A. Hamud P.E. Erick Griffiths

Outline

- ▶ The City of Logan Environmental Department
- The Regional Wastewater Treatment Facility
- Wastewater Reuse
- TMDL
- Algae Growth
- Algae Harvesting
- Biofuels

CACHE **BOX ELDER** WEBER MORGAN DAGGETT SALT TOOELE WASATCH HESNE UINTAH UTAH JUAB CARBON SANPETE **EMERY** MILLARD GRAN SEVIER BEAVER PIUTE WAYNE IRON **GARFIELD** SAN JUAN WASHINGTON KANE Cache Valley is the most lovely and enhanced valley I have ever seen, a

before fade as nothing

The Place

valley that makes all that has gone

-Thomas Wolfe

The City of Logan Environmental Department

- Regional wastewater treatment
- County-wide solid waste and disposal

Communities Served:

- Logan
- Smithfield
- Hyde Park
- North Logan
- River Heights
- Providence
- Nibley
- Utah State University

Headworks

Influent Wastewater Characteristics

2010 Logan Lagoons Wastewater Influent

Constituent (mg/l)	Spring	Summer	Fall	Winter	Typical Weak Wastewater
TSS	120	87	104	140	100
BOD	108	89	98	118	110
Ammonia	17	14	18	18	12
Total Phosphorus	5	3	4	5	6

City of Logan Wastewater Lagoons

Process Flow

Effluent Water Quality

2010 Logan Lagoons Wastewater Effluent (001)

Constituent (mg/l)	Spring	Summer	Fall	Winter
TSS	22	21	23	40*
BOD	25	9	7	25
Ammonia	14	7	4	11
Total Phosphorus	4	4	2	3

Effluent Limitations

Constituent (mg/l)	30-day Average		7-day Average	
TSS	2	5	35	
BOD	2	5	35	
Ammonia	Spring	Summer	Fall	Winter
Ammoma	11.9	9.1	11.2	14.4

Current Water Reuse

- Irrigation
 - During the summer months, near 100% of the effluent is used for irrigation by farmers
 - Approximately 800 acres of pastureland and cropland between the WWTP and Cutler Reservoir that are flood irrigated
 - Approximately 580 acres are irrigated fallow/pasture area and 220 acres are used for crop production

Receiving Water Body

City of Logan Constructed Wetlands for Ammonia Reduction

Utah Department of Environmental Quality Division of Water Quality TMDL Section

Middle Bear River and Cutler Reservoir TMDLs

- TMDL was completed in 2010
- Allowable load of phosphorus:
 - 4,405 kg (May to October)
 - 11, 831 kg (November to April)
- The City will need to reduce the total phosphorus of effluent by as much as 65%

Initial Recommendation for Improvement to Meet New Limits

Sequential Batch Reactor (SBR)

```
Peak Month Average Daily Flow 48 mgd
Annual Average Daily Flow 28 mgd
Capital Cost $188 million
Annual O&M Cost $3 million
```

Increasing Logan's base rates \$60/month

Alternative Solution – Wastewater Reuse for Biofuel Production

- Enhance algae growth to consume nutrients in the wastewater
- Harvest the algae
- Convert algae to biogas

Algae Growth in the Lagoons

Enhance Algae Growth

Left: Small Scale Raceways

Right: Pilot Scale Raceways

Phosphorus Uptake byAlgae

Nitrogen Removal

Nitrogen Uptake During Algae Growth in Small Scale Raceways

Enhance Algae Growth

Mobile Testing Unit

Enhance Algae Growth

Rotating Algal Biofilm Reactor (RABR)

Harvesting Algae

- Dissolved Air Flotation (DAF)
- Cross Flow Filtration

DAF

- Water is supersaturated under pressure
- Pressure is released, microbubbles form and raise algae to the surface
- The algae is skimmed off the surface
- Chemicals are added to aid flocculation when necessary

Cross Flow Filtration

- Algal suspension flows parallel to surface of membrane
- Algae contained in the retentate while water is released in permeate

Algae Production Estimates

- Treated Water: 14 MGD
- Average Algae Formula: $C_{106}H_{263}O_{110}N_{16}P$
- Phosphorus Loads: 3-6 mg/l

Estimated Algae Production $\approx 12-24$ tons per day (d.w.)

Convert Harvested Algae into Energy

- Biogas
 - Methane combustion to produce electricity
- Biodiesel
 - Run diesel garbage trucks
 - Logan City operates approximately 40 trucks

Pilot Testing to Convert Algae to Biogas

Anaerobic Digesters on-site

- 1000 gal
- Co-digestion of other materials (green waste, food waste, etc.)

Anaerobic Chamber at USU

 Identify biogas yields from algae

Estimated Gas Production

- ▶ 180,000-500,000 cubic feet per day
- Produce electricity to power 170 500 homes

Algae Strains in Wastewater Lagoons

Biodiesel

- Conversion of algae lipids to biodiesel
- USU is working on process to produce biodiesel on a large scale

Preliminary Biodiesel Results

Summary

Let nature work for us

- Lower cost
- Better for the environment
- Better for the community

Acknowledgements

http://swbec.usu.edu/

A collaboration between

- USU Biological Engineering Department
- College of Engineering at Utah State University
- Environmental Department, City of Logan, Utah.